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ON LINEAR GROUPS OVER A FIELD OF 
FRACTIONS OF A POLYCYCLIC GROUP RING 

BY 

A. I. LICHTMAN 

ABSTRACT 

Let G be a torsion free polycyclic-by-finite group and D be the field of fractions 
of the group algebra KG. Then any periodic subgroup of D. is locally finite. 
This answers a question posed by D. Farkas. 

Let G be a poly-(infinite cyclic) group, C be a field and A be the (skew) field of 

fractions of the group ring CG. 

D. Farkas posed in [3] a question whether periodic subgroups of the matrix 

group A. are locally finite. His question was raised in connection with D. Segal's 

article [8], where the local finiteness of some periodic groups of automorphism is 

proven;  in particular, these are subgroups of ( Z G ) , ,  where G is polycyclic-by- 

finite. 

The positive answer to Farkas '  question follows from the results of this article. 

Let D be a (skew) field. Consider a subgroup G of the multiplicative group 

D* and a central subring C. We denote by C ( G )  the subfield generated by C 

and G. 

Our  main result is (see corollary of Theorem 2 below): 

Let D = C ( G )  be a field generated by a polycyclic-by-finite group G. Then any 

periodic subgroup of D, is locally finite. 

In order to formulate Theorems 1 and 2 of the article we need some concepts 

from [6]. 

Let R be a ring, S C_ R be a subring with the same unit. We remind one that a 

system of elements e~ = 1, e2 , "  ", e, is a normalizing basis of R over S if 

(i) there holds for every s E S 

(1.1) e,s = ~o, ( s ) e ,  

where q~ is an automorphism of S (i = 1 , 2 , - . . ,  n); 
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(ii) the elements e, (i = 1 ,2 , . . . ,  n) form a basis of R as a left S-module. 

The group qb of automorphisms of S, generated by all the automorphism 9, in 

(1.1), will be called the automorphism group, generated by the basis e~ (i = 

1 , 2 , . . . , n ) .  

If now G is a subgroup of the group of units S* of S then we say that qb is 

almost inner on G if G is �9 invariant and all the elements of qb, whose 

restrictions are inner on G, form a subgroup qbo of finite index in qb. 

Our main result follows as a corollary of the following Theorem (see Theorem 

2): 

Let D = K ( G ), where G is polycyclic-by-finite, K = Z or Zp, and R be a ring 

which has a basis e, (i = 1,2,. �9 n) which normalizes D and generates an almost 

inner group of automorphisms of G. Then any periodic subgroup of R * is locally 

finite. 

Indeed, if R = D~, where D is generated by a polycyclic-by-finite group G, 

then the system of matrix units e,j (1 < i <_- n ; 1 _-< j = n) gives a normalizing basis 

of R over D which induces a unit group of automorphisms in G. 

We consider also a case when the subgroup F C_ R* consists of unipotent 

elements, i.e. ( f - 1 )  is nilpotent for every f E F, and prove that under these 

conditions F must be nilpotent of class less than or equal to n;  moreover, the 

subring T generated by all the elements ( f -  1), [ E F, is nilpotent of class less 

than or equal to n (see Theorem 1). 

2. The Approximation Theorem and its corollaries 

We denote in this section by D a field, generated by a polycyclic-by-finite 

group G over the subring K, generated by 1, and let R be a ring which has a 

basis which normalizes D and generates an almost inner group of automorphism 

in G. It is not difficult to show that G contains a characteristic poly-{infinite 

cyclic} subgroup H of finite index such that H / p ( H )  is free abelian, where p(H)  

is the nilpotent radical of H, and R has a basis u~= 1,u2,- ' - ,un which 

normalizes H and a subfield Do = K ( H )  and generates an almost inner group of 

automorphisms in H (see [6], lemma 3.1). As usual, we denote by h(G)  the 

Hirsch number of G. 

We have under this assumption theorem 4.1 of [6]. 

Let nonzero elements 

(2.1) x, (j = 1 , 2 , . . . , m )  

be given. Then a subring Q c_ R can be found such that 
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(i) x, E O  ( j =  l , 2 , . . . , m )  and K[G]C_ O; 

(ii) there exists an epimorphism 0 of Q on a ring 0 o[ finite characteristic p with 
ker O a quasiregular ideal in Q such that 0 contains a poly-{infinite cyclic} 
subgroup F, where h (F) >= I provided that G is not abelian-by-finite ; the group P 
and Z, generate in 0 the group ring ZpP ; 

(iii) 0 contains the field of fractions A of ZpP and has a normalizing basis 
v, = 1, re,. �9 v, over A, which generates an almost inner group of automorphism 

in F; 
(iv) ~o(x,)~ 0 (j = 1 , 2 , . . . , m ) ;  

(v) an element q E Q is invertible in Q if and only if its image [t = O(q) is 
invertible in Q; 

(vi) the Jacobson radical J(Q ) of 0 satisfies the relation (j(O))n = 0. 

We describe here the main steps in constructing the ring O and the 

homomorphism 0; this is essential for the proof of Proposition 1 below. 

Let �9 be the group of automorphisms, generated by the basis u~ = 

1, u : , . . . ,  u,, and let qr be the group of automorphisms of H, generated by qb 

together with the group I n n H  of the inner automorphisms of H. If g l =  

1, gz, '" ". g, be a transversal of H in G then one can adjoin, if necessary, these 

elements to the system of elements (2.1) and we assume therefore that the 

system (2.1) contains a transversal of H in G. 

We have representations 

x~= s xr xj~EDo ( f = l , 2 , . . . , m )  
c t ~ l  

(2.2) 

and 

(2.3) ( a )  (e,) u~,uo._= y ..... u~, y ..... ~Do (l<-a, ct,a2<=n). 
a = l  

Consider now the subring K[H] of Do, generalized by H. Since H is 

polycyclic, K[H] is a Noetherian domain and hence the field Do = K(H)  is a 

field of fractions of K[H]. We can therefore write out all the elements xj~, ~,~1 J Otl,Ot 2 

in (2.2) and (2.3)in a form (c~, d~), c~ ~ K [ H ] ,  de E K [ H ]  (/3 = 1 , 2 , . . . , L ) .  

Zalesskii's results on ideal correspondence in group rings of solvable groups 

([7], 11.4) imply that K[H] is isomorphic to the cross product 

K[H] ~- K[N] * H/N, 

where N is the center of the Fitting subgroup p(H) of H (see [6], corollary of 

proposition 2.3). 
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Since N is a free abelian group of finite rank and K = Z or K = Zp, any 

maximal ideal of K[N] has a finite index; this implies that the V-orbit of any 

maximal ideal is finite. It has been proven in [6] (see proposition 2.6 of [6]) that 

the results of Bergman and Roseblade related to Hall's problem on polycyclic 

groups allow one to find a maximal ideal A C_ K[N] with a V-orbit A, = 

A, Az," " ", Ak, such that 

co~A~H, d~A~H ( i=l ,2 , . . . , k ;[3=l ,2 , . . . ,L) .  

It is not difficult to prove ([6], lemma 4.1) that H contains a characteristic 

subgroup U of finite index which stabilizes every ideal Ai (i = 1,2,.  �9 k). Let 

k k 

M = K[U]\  U A,U = K[U]\  CJ A, * U/N. 
i=1  i=1  

The set M is ~-invariant and it is proven in [6] (see the proof of theorem 4.1) 

that M is a right denominator set of regular elements in K[H]. 
Consider the ring of fractions K[H]M. Since Do is the ring of fractiong of 

K[H] we obtain that K[H]M C_ Do. This implies that the K[H]M module 

O = KIH]Mu, + K[H]Mu2+... +K[H]uu, 

is free on u,, uz, �9 �9 ", u,. 

It is proven in [6] that Q is a subring of R containing all the elements x, 

(a = 1 , 2 , . . . , m ) .  

Finally, let 

(2.4) B = ('] A, ; (B)  = BQ. 

Then B is a xt'-invariant ideal of KIN], (B) is a quasiregular ideal of O and 

(B) = ker 0. [] 

We need the following property of the ideal ker 0 = (B): 

PROPOSITION 1. The ideal (B)= BQ is residually nilpotent: 

(2.5) 

PROOF. 

that 

f'l (B)" = O. 
s = l  

Since K[N] is a Noetherian domain we obtain by the Krull theorem 

( ]  B~=O.  
S = I  
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Since U stabilizes every ideal A~ (i = 1 ,2 , . . . ,  k) and contains N we obtain 

that 

and 

(2.6) 

A , K [ U I = A , U = A , * U / N  (i = 1 , 2 , . . . , k )  

BK[U] = BU = B * U/N. 

The relation (2.6) implies now that the ideal BK[ U] is residually nilpotent. 

On the other hand we have the relation 

B(K[U])  = (B * U/N)M, 

and it can be verified easily that the residual nilpotencr of the ring B * U/N 

implies that (B * U/N)M is residually nilpotent too. 

If now h~ = 1, h2," �9 ", h, is a transversal of U in H then it gives a basis of K[H] 

over K[U] ,  which normalizes K[U] (see [6], lemma 4.1); it will be therefore a 

normalizing basis of K[H]M over K[U]M and it normalizes (B*  U/N)M 

because B is H-invariant. Since the system of elements uo (a = 1,2,.  �9 -, n)  is a 

normalizing basis of Q over K[H]M we obtain easily that the system 

(2.7) u, hj (a = l , 2 , - . . , n ,  j = l , 2 , " ' , r )  

is a normalizing basis of Q over K[U]M ; it normalizes the ideal (B * U/N)M 

because B is ~-invariant. 

This easily implies that B(K[U]M)Q = BQ is an ideal in Q and BQ has a 

normalizing basis (2.7) over B(K[U]M). Moreover, the residual nilpotence of 

B (K[ U]M) implies that BQ is residually nilpotent. [] 

3. The proofs of the main results 

Throughout  this section D denotes a field, generated by a polycyclic-by-finite 

group G over Z or Zp and R will be a ring, which has a basis el = 1, e2 , "  ", e, 

which normalizes D and generates an almost finite group ~b of automorphisms in 

D. 

We prove under these assumptions the following results. 

PROPOSITION 2. Let T be a finitely generated subring o[ R such that ]:or any 

element x E T a representation 

(3.1) x =- E x, 
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can be found such that all the elements in the right side of (3.1) are nilpotent. Then 

T ~ = 0 .  

THEOREM 1. Let F be an unipotent subgroup of R * and T be the subring of R, 

generated by all the elements of the form f - 1, f E F. Then 

(3.2) T n = 0 

and, hence, jn (F) = 1. 

THEOREM 2. Let F be a periodic subgroup of R *. Then F is locally finite. 

Our proofs are based on the Approximation Theorem and use induction by 

the Hirsch number h(G)  of G. When h(G)  = O, G will be finite and R will be a 

finite dimensional algebra; Proposition 2 and Theorems 1 and 2 become in this 

case well-known classical theorems. This establishes the truth of the first step of 

the induction, when h ( G ) =  0, and we will deal therefore only with the second 

step. 

PROOF OF PROPOSITION 2. First of all Theorem 30 of chapter 4 in [5] implies 

easily that any nilsubring in R is nilpotent of index less than or equal to n. It is 

enough therefore to prove that T is nil. 

Take the element x in the left side of (3.1). Since dim~(R : D )  -< n the 

elements 1, x,. �9 x ~ are linearly dependent  over D and we have therefore some 

relation 

(3.3) A,x", + A2x "2+. .  �9 + Mx "~ = 0, 

where ().~ Aj E D  (j = 1 , 2 , . . . , k )  and n >=n,>nz>."  ">nk >=0. 

Prove that x "~ = 0. Indeed, if x n,~ 0 we can find by the Approximation 

Theorem a subring Q, which contains all the generators of T, the elements 

AI, A i '  ( / ' = l , 2 , . . . , k ) ;  x "~ 

and such that 

(3.4) $ ~ r 0 

in 0 .  The relation (3.3) implies in (~ a relation 

(3.Y) A,g~, + A2g ~: + - ' .  + X~g ~ = O. 

Since Q contains all the generators of T, we have T C_ O and T _C 0 ; hence 2c is 

nilpotent by the induction assumption and hence x is nilpotent. 
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Let s be the smallest natural number such that 

We will prove that s = nk. This contradicts (3.4) and would therefore complete 

the proof. 

Assume thus that s > nk. Multiply (3.3') by s ' and obtain 

~k ~s-I ~ (), 

which gives, via the fact that ,(~ is invertible in 0 ,  that 

.~- '  =8 ,  

which contradicts the definition of s. [] 

COROLLARY. Let X C_ R be a nilsemigroup. Then X is nilpotent of index less 

than or equal to n. 

PROOF. Consider any finitely generated subsemigroup X, C_ X. The subring, 

generated by X, satisfies the conditions of Proposition I and, hence, X~' = 0 and 

the assertion follows. 

PROOF OF THEOREM 1. Let F, = gp(f~,f2,.- ",fk) be any finitely generated 

subgroup of F. The vector space (over Zp or Z),  generated by all the elements 

f - 1, [ E Fj, is a subring T, C_ T, every element of which is a sum of nitpotent 

ones. The identity 

(xy - 1)= (x - 1)+ (y - 1 )+(x  - 1)(y - 1) 

shows that T, is generated by the elements ~ - 1), i = 1 , 2 , . . . , k .  Hence T? = 0 

by Proposition 1; since F, is an arbitrary subgroup of F, we obtain that T ~ = 0. []  

COROLLARY. Assume that char D =p and let P C_ R* be a P-group. Then 

3,, (P) = 1. 

PROOF. Consider the subring TC_ R, generated by all the elements of the 

form (f - 1), f E P. Since the element (f - 1) is nilpotent when f is a p-element,  

the assertion follows from Theorem 1. [] 

The proof of Theorem 2 will make use of the following assertion. 

PROPOSITION 3. Let nonzero elements of R, xj (j = 1 , 2 , . . . ,  m), be given and 

Q be a subring of R, which satisfies properties (i)-(vi) of the Approximation 

Theorem. Then any element of finite order in the group (1 + ker 0) is a p-element. 
(Here p is the characteristic of (~.) 
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PROOF. Let 

(3.5) (1 + x) q = 1, 

where x E (B) and q is a prime number. Apply Proposition 1 and find s such 

that x E (B)S \ (B)  ' ' ' .  The relation (3.5) now implies 

(3.6) qx E (B)"  '. 

Assume that q r  p. We will prove that this, together with (3.6), implies 

x E (B) TM, which contradicts the choice of s. 

Indeed, if char Q = p  then (3.6) implies at once that x E ( B )  ~ ' .  If now 

char Q = 0 then the fact that char 0 = p implies that p E (B) and this together 

with the relation x E (B)' implies 

px ~ ( B ) ' " ,  

which together with (3.6) gives once again x E (B) '  "'. [] 

PROOF OF THEOREM 2. We can assume that F has a finite system of generators 

f , f : , . . . , f ,  and prove that F is finite. 

Case 1. Assume that charD =p.  

Apply the Approximation Theorem and find the subring O, containing 

f , , f~_, . . . , f , ,  and hence the group F. The image F of F in the quotient ring 0 is 

finite by the induction hypothesis and the kernel of the homomorphism F---~ P 

induced by 0 is a periodic subgroup P of 1 + ker 0. By Proposition 3, P must be a 

p-group. Since F / P  = P is a finite group, P is finitely generated and it follows 

from Corollary of Theorem 1 that P is finite and hence F is finite. The assertion 

is thus proven in the case when char D = p. 

Case 2. c h a r D = 0 .  

We will find two different prime numbers p~ such that F is a finite extension of 

a p,-group (i = 1,2); this would imply, of course, that F is finite. 

First apply the Approximation Theorem to the system of elements f~,f2, �9 �9 ",f, 

and find a subring O, with properties (i)-(vi). Since 0~ is a ring of finite 

characteristic, say p~, Proposition 3 implies, via the truth of the assertion in case 

I, that F is a finite extension of a p,-group. 

Consider now a new system of elements, p~ , f ,  f 2 , ' " , f r  and find a subring 

O2___ R, which contains this system and satisfies conclusions (i)-(vi) of the 

Approximation Theorem. It is important that the property (iv) implies that 

~6, ~ 0 in the ring O: and hence char 02 is some prime number p2 ~ pl. Once 
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again, as above, obtain that F is a finite extension of a p2-group and the assertion 

follows. [] 

Theorems 1 and 2 and Proposition 2 were established under the assumption 

that D = K(G) ,  where K = Z or Zp. Consider now the case when D = C(G)  is 

generated by a polycyclic-by-finite group G over a central subring C and 

R = D~. For any finite number of elements xl,x2," ",xm E R we can now find a 

finitely generated subring Co C C such that x~ E A,, where A = Co(G). If Co is 

generated by elements zj (j = l , 2 , . - . , n ) ,  then the subgroup Go= 

gp{G, zl, z2," �9 ", zn) of A* is polycyclic-by-finite and A = K(Go), where K = Z or 

Zp. The following corollary of the results of this paragraph now follows easily. 

COROLLARY. Let A = C( G ), where G is polycyclic-by-finite and C is a central 

subring of A. Then the conclusions of Proposition 2, Theorem 1 and Theorem 2 

hold in the ring R = An. 

In particular, the group ring KG of a polycyclic-by-finite torsion free group G 

is a domain (see [1], [2], [4]) and, hence, has a field of fractions A, and we see that 

the results of the article are applied to the ring A,. 
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