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ON LINEAR GROUPS OVER A FIELD OF
FRACTIONS OF A POLYCYCLIC GROUP RING

BY
A. L. LICHTMAN

ABSTRACT

Let G be a torsion free polycyclic-by-finite group and D be the field of fractions
of the group algebra KG. Then any periodic subgroup of D, is locally finite.
This answers a gquestion posed by D. Farkas.

Let G be a poly<(infinite cyclic) group, C be a field and A be the (skew) field of
fractions of the group ring CG.

D. Farkas posed in [3] a question whether periodic subgroups of the matrix
group A, are locally finite. His question was raised in connection with D. Segal’s
article [8], where the local finiteness of some periodic groups of automorphism is
proven; in particular, these are subgroups of (ZG)., where G is polycyclic-by-
finite.

The positive answer to Farkas’ question follows from the results of this article.

Let D be a (skew) field. Consider a subgroup G of the multiplicative group
D* and a central subring C. We denote by C(G) the subfield generated by C
and G.

Our main result is (see corollary of Theorem 2 below):

Let D = C(G) be a field generated by a polycyclic-by-finite group G. Then any
periodic subgroup of D, is locally finite.

In order to formulate Theorems 1 and 2 of the article we need some concepts
from [6].

Let R be aring, S C R be a subring with the same unit. We remind one that a
system of elements e, =1, e,,- - -, ¢, is a normalizing basis of R over § if

(i) there holds for every s€ S

(L.1) es = q@i(s)e,
where ¢, is an automorphism of § (i =1,2,---,n);
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(ii) the elements e, (i =1,2,---,n) form a basis of R as a left S-module.

The group ® of automorphisms of S, generated by all the automorphism ¢; in
(1.1), will be called the automorphism group, generated by the basis e (i =
1,2,---,n).

If now G is a subgroup of the group of units $* of § then we say that @ is
almost inner on G if G is ® invariant and all the elements of ®, whose
restrictions are inner on G, form a subgroup @, of finite index in &.

Our main result follows as a corollary of the following Theorem (see Theorem
2):

Let D = K(G), where G is polycyclic-by-finite, K = Z or Z,, and R be a ring
which has a basise, (i = 1,2, -, n) which normalizes D and generates an almost
inner group of automorphisms of G. Then any periodic subgroup of R* is locally
finite.

Indeed, if R = D., where D is generated by a polycyclic-by-finite group G,
then the system of matrix units e; (1 =i = n; 1 =j = n) gives a normalizing basis
of R over D which induces a unit group of automorphisms in G.

We consider also a case when the subgroup F C R* consists of unipotent
elements, i.e. (f —1) is nilpotent for every f € F, and prove that under these
conditions F must be nilpotent of class less than or equal to n; moreover, the
subring T generated by all the elements (f — 1), f € F, is nilpotent of class less
than or equal to n (see Theorem 1).

2. The Approximation Theorem and its corollaries

We denote in this section by D a field, generated by a polycyclic-by-finite
group G over the subring K, generated by 1, and let R be a ring which has a
basis which normalizes D and generates an almost inner group of automorphism
in G. It is not difficult to show that G contains a characteristic poly-{infinite
cyclic} subgroup H of finite index such that H/p(H) is free abelian, where p (H)
is the nilpotent radical of H, and R has a basis u;=1,u,, -, u, which
normalizes H and a subfield D, = K(H) and generates an almost inner group of
automorphisms in H (see [6], lemma 3.1). As usual, we denote by h(G) the
Hirsch number of G.

We have under this assumption theorem 4.1 of [6].

Let nonzero elements
2.1 6 (G=12,-,m)
be given. Then a subring Q C R can be found such that
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(i) x€Q (=12,---,m) and K[G]C Q;

(ii) there exists an epimorphism 6 of Q on a ring Q of finite characteristic p with
ker 6 a quasiregular ideal in Q such that Q contains a poly-{infinite cyclic}
subgroup F, where h(F)Z | provided that G is not abelian-by-finite ; the group F
and Z, generate in Q the group ring Z,F;

(iii) Q contains the field of fractions A of Z,F and has a normalizing basis
v =1,vs -, vy over A, which generates an almost inner group of automorphism
in F‘;

(iv) e(x)#0 (G =1,2,---,m);

(v) an element q € Q is invertible in Q if and only if its image 4 = 0(q) is
invertible in Q;

(vi) the Jacobson radical J(Q) of Q satisfies the relation (J(Q))" = 0.

We describe here the main steps in constructing the ring Q and the
homomorphism 6; this is essential for the proof of Proposition 1 below.

Let & be the group of automorphisms, generated by the basis u, =
1,uy -+, u,, and let ¥ be the group of automorphisms of H, generated by &
together with the group Inn H of the inner automorphisms of H. If g, =
1,2, . g be a transversal of H in G then one can adjoin, if necessary, these
elements to the system of elements (2.1) and we assume therefore that the
system (2.1) contains a transversal of H in G.

We have representations

(2.2) X, = E Xjaly ; x. €Dy (f=12,---,m)
a-|
and
(23) Us Ua, = Z ygx,.)azua, yg',_)alED() (1 éa,a.,azén).

a=l

Consider now the subring K[H] of D, generalized by H. Since H is
polycyclic, K[H] is a Noetherian domain and hence the field D= K(H) is a
field of fractions of K[H]. We can therefore write out all the elements X, ¥ 5,
in (2.2) and (2.3) in a form (cs,dg), ¢z € K[H), ds EK[H] (B =1,2,---,L).

Zalesskii’s results on ideal correspondence in group rings of solvable groups
([7], 11.4) imply that K[H] is isomorphic to the cross product

K[H]}=K[N]*HIN,

where N is the center of the Fitting subgroup p(H) of H (see [6], corollary of
proposition 2.3).
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Since N is a free abelian group of finite rank and K =Z or K = Z,, any
maximal ideal of K[N] has a finite index; this implies that the ¥-orbit of any
maximal ideal is finite. It has been proven in [6] (see proposition 2.6 of [6]) that
the results of Bergman and Roseblade related to Hall’s problem on polycyclic
groups ailow one to find a maximal ideal A C K[N] with a V-orbit A, =
A, A-, - -+, A, such that

& AH, d;& AH (i=412,---,k; B=1,2,---,L).

It is not difficult to prove ([6], lemma 4.1) that H contains a characteristic
subgroup U of finite index which stabilizes every ideal A; (i = 1,2, -+, k). Let

M = K[U]\ LkJ AU = K[U]\ Lf) A, * U/N.

The set M is W-invariant and it is proven in [6] (see the proof of theorem 4.1)
that M is a right denominator set of regular elements in K[H].

Consider the ring of fractions K[H|u. Since D, is the ring of fractions of
K[H] we obtain that K[H]x C D,. This implies that the K[H]. module

O =K[H]Mu;+K[H]Mu2+ +K[H]Mun

is free on uy, Uz, - - -, Us.

It is proven in [6] that Q is a subring of R containing all the elements x,
(a=1,2,---,m).

Finally, let

2.4) B=N A:; {(B)= BO.
Then B is a W-invariant ideal of K[N], (B) is a quasiregular ideal of Q and

(B) = ker 6. O
We need the following property of the ideal ker 8 = (B):

ProrosiTION 1. The ideal (B)= BQ is residually nilpotent:

2.5) n (B) =0.

Proor. Since K[N] is a Noetherian domain we obtain by the Krull theorem
that

N B*=0.

s=1
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Since U stabilizes every ideal A; (i =1,2,--+, k) and contains N we obtain
that

AK[UI=AU=A*UIN (i=12--k)
and
(2.6) BK[U]=BU =B = U|N.

The relation (2.6) implies now that the ideal BK[ U] is residually nilpotent.
On the other hand we have the relation

B(K[U])=(B * U/N)u,

and it can be verified easily that the residual nilpotencg of the ring B * U/N
implies that (B * U/N) is residually nilpotent too.

If now h, =1, h,,* -+, h, is a transversal of U in H then it gives a basis of K[H]
over K[U], which normalizes K[U] (see [6], lemma 4.1); it will be therefore a
normalizing basis of K[H]n over K[U]x and it normalizes (B * U/N)y
because B is H-invariant. Since the system of elements u, (@ =1,2,---,n)is a
normalizing basis of Q over K[H]n we obtain easily that the system

2.7) u.h; (@=1,2,---,n, j=1,2,-++7r)

is a normalizing basis of Q over K[U] ; it normalizes the ideal (B * U/N ),
because B is W-invariant.

This easily implies that B(K[U]x)Q = BQ is an ideal in Q and BQ has a
normalizing basis (2.7) over B(K[U]wm). Moreover, the residual nilpotence of
B(K[U]wm) implies that BQ is residually nilpotent. N

3. The proofs of the main results

Throughout this section D denotes a field, generated by a polycyclic-by-finite
group G over Z or Z, and R will be a ring, which has a basis e, = 1,¢e,,- -, e,
which normalizes D and generates an almost finite group ¢ of automorphisms in
D.

We prove under these assumptions the following results.

ProrosiTION 2. Let T be a finitely generated subring of R such that for any
element x € T a representation

(3.1) x=2x,-
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can be found such that all the elements in the right side of (3.1) are nilpotent. Then
T" =0.

THEOREM 1. Let F be an unipotent subgroup of R* and T be the subring of R,
generated by all the elements of the form f —1, f € F. Then

(3.2) T =0
and, hence, j,(F)=1.
THEOREM 2. Let F be a periodic subgroup of R*. Then F is locally finite.
Our proofs are based on the Approximation Theorem and use induction by
the Hirsch number h(G) of G. When h{(G) =0, G will be finite and R will be a
finite dimensional algebra; Proposition 2 and Theorems 1 and 2 become in this
case well-known classical theorems. This establishes the truth of the first step of

the induction, when h(G) =0, and we will deal therefore only with the second
step.

PrOOF OF ProposiTiON 2.  First of all Theorem 30 of chapter 4 in [5] implies
easily that any nilsubring in R is nilpotent of index less than or equal to n. It is
enough therefore to prove that T is nil.

Take the element x in the left side of (3.1). Since dim;(R:D)=n the
elements 1, x,- - -, x" are linearly dependent over D and we have therefore some
relation

(33) ,\lx"l+/\2x"z+...+l\kx"k ._.0’
Where ()#/\IED Uzlazv"',k)and n§n|>n2>--->nk =0.

Prove that x™ =0. Indeed, if x™#0 we can find by the Approximation
Theorem a subring Q, which contains all the generators of T, the elements

A (=12, k); x™
and such that
(3.4) A0
in Q. The relation (3.3) implies in Q a relation
(3.3) NE+ A E+ -+ L E™ =0.

Since Q contains all the generators of T, we have T C Q and T C Q; hence T is
nilpotent by the induction assumption and hence x is nilpotent.
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Let s be the smallest natural number such that
7 =0.

We will prove that s = n,. This contradicts (3.4) and would therefore complete
the proof.
Assume thus that s > n,. Multiply (3.3') by x* ™™ ' and obtain

AT =0,
which gives, via the fact that A« is invertible in O, that
7' =0,
which contradicts the definition of s. [

CoroLLARY. Let X C R be a nilsemigroup. Then X is nilpotent of index less
than or equal to n.

Proor. Consider any finitely generated subsemigroup X, C X. The subring,
generated by X, satisfies the conditions of Proposition 1 and, hence, X} =0 and
the assertion follows.

PrROOF oF THEOREM 1. Let F,=gp(f,,f, --,fi) be any finitely generated
subgroup of F. The vector space (over Z, or Z), generated by all the elements
f—1,f€F, is asubring T, C T, every element of which is a sum of nilpotent
ones. The identity

(xy-D=@x-D+@y-D+x-1)(y-1)

shows that T, is generated by the elements (f; —1),i =1,2,---, k. Hence T =0
by Proposition 1; since F, is an arbitrary subgroup of F, we obtain that 7" = 0. (1

COROLLARY. Assume that charD =p and let PC R* be a P-group. Then
v (P)=1.

Proor. Consider the subring T C R, generated by all the elements of the
form (f — 1), f € P. Since the element (f — 1) is nilpotent when f is a p-element,
the assertion follows from Theorem 1. O

The proof of Theorem 2 will make use of the following assertion.

PROPOSITION 3. Let nonzero elements of R, x; (j =1,2,--+,m), be given and
Q be a subring of R, which satisfies properties (i}-(vi) of the Approximation
Theorem. Then any element of finite order in the group (1 + ker 8) is a p-element.
(Here p is the characteristic of Q.)
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Proor. Let
3.5) (1+x) =1,

where x € (B) and ¢ is a prime number. Apply Proposition 1 and find s such
that x €(B)'\(B)''. The relation (3.5) now implies

(3.6) gx €(B)"".

Assume that g# p. We will prove that this, together with (3.6), implies
x €(BY"', which contradicts the choice of s.

Indeed, if char Q =p then (3.6) implies at once that x €(B)"'. If now
char Q =0 then the fact that char Q = p implies that p € (B) and this together
with the relation x € (B)' implies

px €(B)",
which together with (3.6) gives once again x € (B)*"". g
ProorF OF THEOREM 2. We can assume that F has a finite system of generators
fi.f: -+, f, and prove that F is finite.

Case 1. Assume that charD = p.

Apply the Approximation Theorem and find the subring Q, containing
fi,f-- -, f., and hence the group F. The image F of F in the quotient ring Q is
finite by the induction hypothesis and the kernel of the homomorphism F— F
induced by @ is a periodic subgroup P of 1 + ker 8. By Proposition 3, P must be a
p-group. Since F/P = F is a finite group, P is finitely generated and it follows
from Corollary of Theorem 1 that P is finite and hence F is finite. The assertion
is thus proven in the case when char D = p.

Case 2. charD =0.

We will find two different prime numbers p; such that F is a finite extension of
a pi-group (i = 1,2); this would imply, of course, that F is finite.

First apply the Approximation Theorem to the system of elements f, f,, -, f,
and find a subring Q, with properties (i}-(vi). Since O, is a ring of finite
characteristic, say p,, Proposition 3 implies, via the truth of the assertion in case
1, that F is a finite extension of a p,-group.

Consider now a new system of elements, pi, fi,f, -, f and find a subring
Q. C R, which contains this system and satisfies conclusions (i}-(vi) of the
Approximation Theorem. It is important that the property (iv) implies that
pi#0 in the ring Q- and hence char Q, is some prime number p, # p,. Once
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again, as above, obtain that F is a finite extension of a p,-group and the assertion
follows. a
Theorems 1 and 2 and Proposition 2 were established under the assumption
that D = K(G), where K = Z or Z,. Consider now the case when D = C(G) is
generated by a polycyclic-by-finite group G over a central subring C and
R = D,. For any finite number of elements x;,x,,---, X, € R we can now find a
finitely generated subring C, C C such that x; € A,, where A = Co(G). If Gy is
generated by elements z; (j=1,2,---,n), then the subgroup G,=
gp{G, z,, z,, -, z,) of A* is polycyclic-by-finite and A = K(Gy), where K = Z or
Z,. The following corollary of the results of this paragraph now follows easily.

COROLLARY. Let A= C(G), where G is polycyclic-by-finite and C is a central
subring of A. Then the conclusions of Proposition 2, Theorem 1 and Theorem 2
hold in the ring R = A,.

In particular, the group ring KG of a polycyclic-by-finite torsion free group G
is a domain (see [1], [2], [4]) and, hence, has a field of fractions A, and we see that
the results of the article are applied to the ring A,.
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