ON LINEAR GROUPS OVER A FIELD OF FRACTIONS OF A POLYCYCLIC GROUP RING

BY

A. I. LICHTMAN

ABSTRACT

Let G be a torsion free polycyclic-by-finite group and D be the field of fractions of the group algebra KG. Then any periodic subgroup of D_n is locally finite. This answers a question posed by D. Farkas.

Let G be a poly-(infinite cyclic) group, C be a field and Δ be the (skew) field of fractions of the group ring CG.

D. Farkas posed in [3] a question whether periodic subgroups of the matrix group Δ_n are locally finite. His question was raised in connection with D. Segal's article [8], where the local finiteness of some periodic groups of automorphism is proven; in particular, these are subgroups of $(ZG)_n$, where G is polycyclic-by-finite.

The positive answer to Farkas' question follows from the results of this article.

Let D be a (skew) field. Consider a subgroup G of the multiplicative group D^* and a central subring C. We denote by C(G) the subfield generated by C and G.

Our main result is (see corollary of Theorem 2 below):

Let D = C(G) be a field generated by a polycyclic-by-finite group G. Then any periodic subgroup of D_n is locally finite.

In order to formulate Theorems 1 and 2 of the article we need some concepts from [6].

Let R be a ring, $S \subseteq R$ be a subring with the same unit. We remind one that a system of elements $e_1 = 1, e_2, \dots, e_n$ is a normalizing basis of R over S if

(i) there holds for every $s \in S$

(1.1)
$$e_i s = \varphi_i(s) e_i,$$

where φ_i is an automorphism of S $(i = 1, 2, \dots, n)$;

Received September 9, 1981

(ii) the elements e_i $(i = 1, 2, \dots, n)$ form a basis of R as a left S-module.

The group Φ of automorphisms of S, generated by all the automorphism φ_i in (1.1), will be called the automorphism group, generated by the basis e_i $(i = 1, 2, \dots, n)$.

If now G is a subgroup of the group of units S^* of S then we say that Φ is almost inner on G if G is Φ invariant and all the elements of Φ , whose restrictions are inner on G, form a subgroup Φ_0 of finite index in Φ .

Our main result follows as a corollary of the following Theorem (see Theorem 2):

Let D = K(G), where G is polycyclic-by-finite, K = Z or Z_p , and R be a ring which has a basis e_i ($i = 1, 2, \dots, n$) which normalizes D and generates an almost inner group of automorphisms of G. Then any periodic subgroup of R^* is locally finite.

Indeed, if $R = D_n$, where D is generated by a polycyclic-by-finite group G, then the system of matrix units e_{ij} $(1 \le i \le n; 1 \le j = n)$ gives a normalizing basis of R over D which induces a unit group of automorphisms in G.

We consider also a case when the subgroup $F \subseteq R^*$ consists of unipotent elements, i.e. (f-1) is nilpotent for every $f \in F$, and prove that under these conditions F must be nilpotent of class less than or equal to n; moreover, the subring T generated by all the elements (f-1), $f \in F$, is nilpotent of class less than or equal to n (see Theorem 1).

2. The Approximation Theorem and its corollaries

We denote in this section by D a field, generated by a polycyclic-by-finite group G over the subring K, generated by 1, and let R be a ring which has a basis which normalizes D and generates an almost inner group of automorphism in G. It is not difficult to show that G contains a characteristic poly-{infinite cyclic} subgroup H of finite index such that $H/\rho(H)$ is free abelian, where $\rho(H)$ is the nilpotent radical of H, and R has a basis $u_1 = 1, u_2, \dots, u_n$ which normalizes H and a subfield $D_0 = K(H)$ and generates an almost inner group of automorphisms in H (see [6], lemma 3.1). As usual, we denote by h(G) the Hirsch number of G.

We have under this assumption theorem 4.1 of [6].

Let nonzero elements

(2.1) $x_j \ (j = 1, 2, \cdots, m)$

be given. Then a subring $Q \subseteq R$ can be found such that

(i) $x_j \in Q$ $(j = 1, 2, \dots, m)$ and $K[G] \subseteq Q$;

(ii) there exists an epimorphism θ of Q on a ring \overline{Q} of finite characteristic p with ket θ a quasiregular ideal in Q such that \overline{Q} contains a poly-{infinite cyclic} subgroup \overline{F} , where $h(\overline{F}) \ge 1$ provided that G is not abelian-by-finite; the group \overline{F} and Z_p generate in \overline{Q} the group ring $Z_p\overline{F}$;

(iii) \overline{Q} contains the field of fractions Δ of $Z_p\overline{F}$ and has a normalizing basis $v_1 = 1, v_2, \dots, v_l$ over Δ , which generates an almost inner group of automorphism in \overline{F} ;

(iv) $\varphi(x_j) \neq \overline{0} \ (j = 1, 2, \cdots, m);$

(v) an element $q \in Q$ is invertible in Q if and only if its image $\bar{q} = \theta(q)$ is invertible in \bar{Q} ;

(vi) the Jacobson radical $J(\bar{Q})$ of \bar{Q} satisfies the relation $(J(\bar{Q}))^n = \bar{0}$.

We describe here the main steps in constructing the ring Q and the homomorphism θ ; this is essential for the proof of Proposition 1 below.

Let Φ be the group of automorphisms, generated by the basis $u_1 = 1, u_2, \dots, u_n$, and let Ψ be the group of automorphisms of H, generated by Φ together with the group Inn H of the inner automorphisms of H. If $g_1 = 1, g_2, \dots, g_s$ be a transversal of H in G then one can adjoin, if necessary, these elements to the system of elements (2.1) and we assume therefore that the system (2.1) contains a transversal of H in G.

We have representations

(2.2)
$$x_j = \sum_{\alpha=1}^n x_{j\alpha} u_\alpha ; \qquad x_{j\alpha} \in D_0 \quad (f = 1, 2, \cdots, m)$$

and

(2.3)
$$u_{\alpha_1}u_{\alpha_2} = \sum_{\alpha=1}^n y_{\alpha_1,\alpha_2}^{(\alpha)}u_{\alpha}, \qquad y_{\alpha_1,\alpha_2}^{(\alpha)} \in D_0 \quad (1 \leq \alpha, \alpha_1, \alpha_2 \leq n).$$

Consider now the subring K[H] of D_0 , generalized by H. Since H is polycyclic, K[H] is a Noetherian domain and hence the field $D_0 = K(H)$ is a field of fractions of K[H]. We can therefore write out all the elements $x_{j\alpha}$, $y_{\alpha_1,\alpha_2}^{(\alpha)}$ in (2.2) and (2.3) in a form $(c_{\beta}, d_{\beta}), c_{\beta} \in K[H], d_{\beta} \in K[H]$ $(\beta = 1, 2, \dots, L)$.

Zalesskii's results on ideal correspondence in group rings of solvable groups ([7], 11.4) imply that K[H] is isomorphic to the cross product

$$K[H] \simeq K[N] * H/N,$$

where N is the center of the Fitting subgroup $\rho(H)$ of H (see [6], corollary of proposition 2.3).

Since N is a free abelian group of finite rank and K = Z or $K = Z_p$, any maximal ideal of K[N] has a finite index; this implies that the Ψ -orbit of any maximal ideal is finite. It has been proven in [6] (see proposition 2.6 of [6]) that the results of Bergman and Roseblade related to Hall's problem on polycyclic groups allow one to find a maximal ideal $A \subseteq K[N]$ with a Ψ -orbit $A_1 =$ A, A_2, \dots, A_k , such that

$$c_{\beta} \not\in A_i H, \quad d_{\beta} \not\in A_i H \qquad (i = 1, 2, \cdots, k; \beta = 1, 2, \cdots, L).$$

It is not difficult to prove ([6], lemma 4.1) that H contains a characteristic subgroup U of finite index which stabilizes every ideal A_i $(i = 1, 2, \dots, k)$. Let

$$M = K[U] \setminus \bigcup_{i=1}^{k} A_i U = K[U] \setminus \bigcup_{i=1}^{k} A_i * U/N.$$

The set M is Ψ -invariant and it is proven in [6] (see the proof of theorem 4.1) that M is a right denominator set of regular elements in K[H].

Consider the ring of fractions $K[H]_M$. Since D_0 is the ring of fractions of K[H] we obtain that $K[H]_M \subseteq D_0$. This implies that the $K[H]_M$ module

$$Q = K[H]_{\mathcal{M}}u_1 + K[H]_{\mathcal{M}}u_2 + \cdots + K[H]_{\mathcal{M}}u_n$$

is free on u_1, u_2, \cdots, u_n .

It is proven in [6] that Q is a subring of R containing all the elements x_{α} ($\alpha = 1, 2, \dots, m$).

Finally, let

(2.4)
$$B = \bigcap_{i=1}^{k} A_i; \quad (B) = BQ.$$

Then B is a Ψ -invariant ideal of K[N], (B) is a quasiregular ideal of Q and $(B) = \ker \theta$.

We need the following property of the ideal ker $\theta = (B)$:

PROPOSITION 1. The ideal (B) = BQ is residually nilpotent:

(2.5)
$$\bigcap_{s=1}^{\infty} (B)^{s} = 0.$$

PROOF. Since K[N] is a Noetherian domain we obtain by the Krull theorem that

$$\bigcap_{s=1}^{\infty} B^s = 0.$$

Since U stabilizes every ideal A_i $(i = 1, 2, \dots, k)$ and contains N we obtain that

$$A_i K[U] = A_i U = A_i * U/N$$
 (*i* = 1, 2, · · · , *k*)

and

$$BK[U] = BU = B * U/N.$$

The relation (2.6) implies now that the ideal BK[U] is residually nilpotent.

On the other hand we have the relation

$$B(K[U]) = (B * U/N)_{\mathcal{M}},$$

and it can be verified easily that the residual nilpotence of the ring B * U/N implies that $(B * U/N)_M$ is residually nilpotent too.

If now $h_1 = 1, h_2, \dots, h_r$ is a transversal of U in H then it gives a basis of K[H]over K[U], which normalizes K[U] (see [6], lemma 4.1); it will be therefore a normalizing basis of $K[H]_M$ over $K[U]_M$ and it normalizes $(B * U/N)_M$ because B is H-invariant. Since the system of elements u_{α} ($\alpha = 1, 2, \dots, n$) is a normalizing basis of Q over $K[H]_M$ we obtain easily that the system

(2.7)
$$u_{\alpha}h_{j}$$
 $(\alpha = 1, 2, \cdots, n, j = 1, 2, \cdots, r)$

is a normalizing basis of Q over $K[U]_M$; it normalizes the ideal $(B * U/N)_M$ because B is Ψ -invariant.

This easily implies that $B(K[U]_M)Q = BQ$ is an ideal in Q and BQ has a normalizing basis (2.7) over $B(K[U]_M)$. Moreover, the residual nilpotence of $B(K[U]_M)$ implies that BQ is residually nilpotent.

3. The proofs of the main results

Throughout this section D denotes a field, generated by a polycyclic-by-finite group G over Z or Z_p and R will be a ring, which has a basis $e_1 = 1, e_2, \dots, e_n$ which normalizes D and generates an almost finite group ϕ of automorphisms in D.

We prove under these assumptions the following results.

PROPOSITION 2. Let T be a finitely generated subring of R such that for any element $x \in T$ a representation

$$(3.1) x = \sum x_i$$

can be found such that all the elements in the right side of (3.1) are nilpotent. Then $T^n = 0$.

THEOREM 1. Let F be an unipotent subgroup of R^* and T be the subring of R, generated by all the elements of the form f - 1, $f \in F$. Then

$$(3.2) T^n = 0$$

and, hence, $j_n(F) = 1$.

THEOREM 2. Let F be a periodic subgroup of R^* . Then F is locally finite.

Our proofs are based on the Approximation Theorem and use induction by the Hirsch number h(G) of G. When h(G) = 0, G will be finite and R will be a finite dimensional algebra; Proposition 2 and Theorems 1 and 2 become in this case well-known classical theorems. This establishes the truth of the first step of the induction, when h(G) = 0, and we will deal therefore only with the second step.

PROOF OF PROPOSITION 2. First of all Theorem 30 of chapter 4 in [5] implies easily that any nilsubring in R is nilpotent of index less than or equal to n. It is enough therefore to prove that T is nil.

Take the element x in the left side of (3.1). Since $\dim_i(R:D) \leq n$ the elements $1, x, \dots, x^n$ are linearly dependent over D and we have therefore some relation

$$\lambda_1 x^{n_1} + \lambda_2 x^{n_2} + \cdots + \lambda_k x^{n_k} = 0,$$

where $0 \neq \lambda_j \in D$ $(j = 1, 2, \dots, k)$ and $n \ge n_1 > n_2 > \dots > n_k \ge 0$.

Prove that $x^{n_k} = 0$. Indeed, if $x^{n_k} \neq 0$ we can find by the Approximation Theorem a subring Q, which contains all the generators of T, the elements

$$\lambda_j, \lambda_j^{-1}$$
 $(j = 1, 2, \cdots, k); \quad x^{n_k}$

and such that

$$(3.4) \qquad \qquad \tilde{x}^{n_k} \neq \bar{0}$$

in \overline{Q} . The relation (3.3) implies in \overline{Q} a relation

(3.3')
$$\bar{\lambda}_1 \bar{x}^{n_1} + \bar{\lambda}_2 \bar{x}^{n_2} + \cdots + \bar{\lambda}_k \bar{x}^{n_k} = \bar{0}.$$

Since Q contains all the generators of T, we have $T \subseteq Q$ and $\overline{T} \subseteq \overline{Q}$; hence \overline{T} is nilpotent by the induction assumption and hence x is nilpotent.

Let s be the smallest natural number such that

 $\bar{x}^{s} = \bar{0}$.

We will prove that $s = n_k$. This contradicts (3.4) and would therefore complete the proof.

Assume thus that $s > n_k$. Multiply (3.3') by \bar{x}^{s-n_k-1} and obtain

$$\bar{\lambda_k}\bar{x}^{s-1}=\bar{0},$$

which gives, via the fact that $\overline{\lambda}_k$ is invertible in \overline{Q} , that

$$\bar{x}^{s-1}=\bar{0},$$

which contradicts the definition of s.

COROLLARY. Let $X \subseteq R$ be a nilsemigroup. Then X is nilpotent of index less than or equal to n.

PROOF. Consider any finitely generated subsemigroup $X_1 \subseteq X$. The subring, generated by X, satisfies the conditions of Proposition 1 and, hence, $X_1^n = 0$ and the assertion follows.

PROOF OF THEOREM 1. Let $F_1 = gp(f_1, f_2, \dots, f_k)$ be any finitely generated subgroup of F. The vector space (over Z_p or Z), generated by all the elements $f-1, f \in F_1$, is a subring $T_1 \subseteq T$, every element of which is a sum of nilpotent ones. The identity

$$(xy - 1) = (x - 1) + (y - 1) + (x - 1)(y - 1)$$

shows that T_1 is generated by the elements $(f_i - 1)$, $i = 1, 2, \dots, k$. Hence $T_1^n = 0$ by Proposition 1; since F_1 is an arbitrary subgroup of F, we obtain that $T^n = 0$. \Box

COROLLARY. Assume that char D = p and let $P \subseteq R^*$ be a P-group. Then $\gamma_n(P) = 1$.

PROOF. Consider the subring $T \subseteq R$, generated by all the elements of the form (f-1), $f \in P$. Since the element (f-1) is nilpotent when f is a p-element, the assertion follows from Theorem 1.

The proof of Theorem 2 will make use of the following assertion.

PROPOSITION 3. Let nonzero elements of R, x_i $(j = 1, 2, \dots, m)$, be given and Q be a subring of R, which satisfies properties (i)-(vi) of the Approximation Theorem. Then any element of finite order in the group $(1 + \ker \theta)$ is a p-element. (Here p is the characteristic of \overline{Q} .)

PROOF. Let

$$(3.5) (1+x)^q = 1$$

where $x \in (B)$ and q is a prime number. Apply Proposition 1 and find s such that $x \in (B)^{s} \setminus (B)^{s-1}$. The relation (3.5) now implies

Assume that $q \neq p$. We will prove that this, together with (3.6), implies $x \in (B)^{s+1}$, which contradicts the choice of s.

Indeed, if char Q = p then (3.6) implies at once that $x \in (B)^{s+1}$. If now char Q = 0 then the fact that char $\overline{Q} = p$ implies that $p \in (B)$ and this together with the relation $x \in (B)^{s}$ implies

$$px \in (B)^{+1}$$
,

which together with (3.6) gives once again $x \in (B)^{s+1}$.

PROOF OF THEOREM 2. We can assume that F has a finite system of generators f_1, f_2, \dots, f_r and prove that F is finite.

Case 1. Assume that $\operatorname{char} D = p$.

Apply the Approximation Theorem and find the subring Q, containing f_1, f_2, \dots, f_r , and hence the group F. The image \overline{F} of F in the quotient ring \overline{Q} is finite by the induction hypothesis and the kernel of the homomorphism $F \rightarrow \overline{F}$ induced by θ is a periodic subgroup P of $1 + \ker \theta$. By Proposition 3, P must be a p-group. Since $F/P \simeq \overline{F}$ is a finite group, P is finitely generated and it follows from Corollary of Theorem 1 that P is finite and hence F is finite. The assertion is thus proven in the case when char D = p.

Case 2. char D = 0.

We will find two different prime numbers p_i such that F is a finite extension of a p_i -group (i = 1, 2); this would imply, of course, that F is finite.

First apply the Approximation Theorem to the system of elements f_1, f_2, \dots, f_r and find a subring Q_1 with properties (i)-(vi). Since \bar{Q}_1 is a ring of finite characteristic, say p_1 , Proposition 3 implies, via the truth of the assertion in case 1, that F is a finite extension of a p_1 -group.

Consider now a new system of elements, $p_1, f_1, f_2, \dots, f_r$ and find a subring $Q_2 \subseteq R$, which contains this system and satisfies conclusions (i)-(vi) of the Approximation Theorem. It is important that the property (iv) implies that $\bar{p}_1 \neq \bar{0}$ in the ring \bar{Q}_2 and hence char \bar{Q}_2 is some prime number $p_2 \neq p_1$. Once

again, as above, obtain that F is a finite extension of a p_2 -group and the assertion follows.

Theorems 1 and 2 and Proposition 2 were established under the assumption that D = K(G), where K = Z or Z_p . Consider now the case when D = C(G) is generated by a polycyclic-by-finite group G over a central subring C and $R = D_n$. For any finite number of elements $x_1, x_2, \dots, x_m \in R$ we can now find a finitely generated subring $C_0 \subseteq C$ such that $x_i \in \Delta_n$, where $\Delta = C_0(G)$. If C_0 is generated by elements z_i $(j = 1, 2, \dots, n)$, then the subgroup $G_0 =$ $gp\{G, z_1, z_2, \dots, z_n\}$ of Δ^* is polycyclic-by-finite and $\Delta = K(G_0)$, where K = Z or Z_p . The following corollary of the results of this paragraph now follows easily.

COROLLARY. Let $\Delta = C(G)$, where G is polycyclic-by-finite and C is a central subring of Δ . Then the conclusions of Proposition 2, Theorem 1 and Theorem 2 hold in the ring $R = \Delta_n$.

In particular, the group ring KG of a polycyclic-by-finite torsion free group G is a domain (see [1], [2], [4]) and, hence, has a field of fractions Δ , and we see that the results of the article are applied to the ring Δ_n .

REFERENCES

1. K. A. Brown, On zero divisors in group rings, Bull. London Math. Soc. 8 (1976), 251-256.

2. G. H. Cliff, Zero divisors and idempotents in group rings, Can. J. Math. 32 (1980), 596-602.

3. D. R. Farkas, Group rings: an annotated questionnaire, Comm. Algebra 8 (1980), 585-602.

4. D. R. Farkas and R. L. Snider, K₀ and Noetherian group rings, J. Algebra 42 (1976), 192-198.

5. N. Jacobson, Ring Theory, Am. Math. Soc., Providence, NJ, 1943.

6. A. I. Lichtman, On normal subgroups of multiplicative group of skew fields generated by a polycyclic-by-finite group, J. Algebra, to appear.

7. D. S. Passman, The algebraic structure of group rings, Wiley-Interscience, New York, 1977.

8. D. Segal, Unipotent groups of module automorphisms over polycyclic group rings, Bull. London Math. Soc. 8 (1976), 174–178.

DEPARTMENT OF MATHEMATICS

BEN GURION UNIVERSITY OF THE NEGEV BEER SHEVA, ISRAEL